Analysis of the potential efficiency of post-filtering noisy images after lossy compression

Author:

Kovalenko BogdanORCID,Rebrov VolodymyrORCID,Lukin VolodymyrORCID

Abstract

An increase in the number of images and their average size is the general trend nowadays. This increase leads to certain problems with data storage and transfer via communication lines. A common way to solve this problem is to apply lossy compression that provides sufficiently larger compression ratios compared to lossless compression approaches. However, lossy compression has several peculiarities, especially if a compressed image is corrupted by quite intensive noise. First, a specific noise-filtering effect is observed. Second, an optimal operational point (OOP) might exist where the quality of a compressed image is closer to the corresponding noise-free image than the quality of the original image according to a chosen quality metric. In this case, it is worth compressing this image in the OOP or its closest neighborhood. These peculiarities have been earlier studied and their positive impact on image quality improvement has been demonstrated. Filtering of noisy images due to lossy compression is not perfect. Because of this, it is worth checking can additional quality improvement be reached using such an approach as post-filtering. In this study, we attempt to answer the questions: “is it worth to post-filter an image after lossy compression, especially in OOP’s neighborhood? And what benefit can it bring in the sense of image quality?”. The study is carried out for better portable graphics (BPG) coder and the DCT-based filter focusing mainly on one-component (grayscale) images. The quality of images is characterized by several metrics such as PSNR, PSNR-HVS-M, and FSIM. Possible image quality increasing via post-filtering is demonstrated and the recommendations for filter parameter setting are given.

Publisher

CASRE of the IGS of NASU

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3