BPG-Based Lossy Compression of Three-Channel Noisy Images with Prediction of Optimal Operation Existence and Its Parameters

Author:

Kovalenko Bogdan1ORCID,Lukin Vladimir1ORCID,Vozel Benoit2ORCID

Affiliation:

1. Department of Information and Communication Technologies, National Aerospace University, 61070 Kharkiv, Ukraine

2. CNRS, IETR-UMR 6164, University of Rennes, F-22305 Lannion, France

Abstract

Nowadays, there is a clear trend toward increasing the number of remote-sensing images acquired and their average size. This leads to the need to compress the images for storage, dissemination, and transfer over communication lines where lossy compression techniques are more popular. The images to be compressed or some of their components are often noisy. They must therefore be compressed taking into account the properties of the noise. Due to the noise filtering effect obtained during lossy compression of noisy images, an optimal operating point (OOP) may exist. The OOP is a parameter that controls the compression for which the quality of the compressed image is closer (closest) to the corresponding noise-free image than the quality of the noisy (original, uncompressed) image according to some quantitative criterion (metric). In practice, it is important to know whether the OOP exists for a given image, because if the OOP exists, it is appropriate to perform the compression in the OOP or at least in its neighborhood. Since the real image is absent in practice, it is impossible to determine a priori whether the OOP exists or not. Here, we focus on three-channel-remote-sensing images and show that it is possible to easily predict the existence of the OOP. Furthermore, it is possible to predict the metric values or their improvements with appropriate accuracy for practical use. The BPG (better portable graphics) encoder is considered a special case of an efficient compression technique. As an initial design step, the case of additive white Gaussian noise with equal variance in the three components is considered. While previous research was mainly focused on predicting the improvement (reduction) of the PSNR and PSNR-HVS-M metrics, here we focus on the modern visual quality metrics, namely PSNR-HA and MDSI. We also discuss what to do if, according to the prediction, an OOP is absent. Examples of lossy compression of noisy three-channel remote sensing images are given. It is also shown that the use of three-dimensional compression provides a compression ratio increase by several times compared with component-wise compression in the OOP.

Funder

French Ministries of Europe and Foreign Affairs

Higher Education, Research and Innovation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3