Oxygenated Diesel Fuels and Their Effect on PM Emissions

Author:

Kozak MiłosławORCID,Merkisz JerzyORCID

Abstract

Particulate matter (PM) emitted by diesel engines is one of the most harmful components of exhaust gases, including its carcinogenic effect. Due to the widespread use of diesel engines, the health effects of PM emissions affect millions of people around the world. At the same time, diesel particulate matter is characterized by a very complicated structure and mechanisms of formation compared to other exhaust gas components. It is obvious that PM emissions should be limited by all means. This article focuses on the reduction of PM emissions with the use of oxygenated fuels. The mechanisms of oxygenated fuels influence on the soot formation process in the working process of diesel engines have been discussed. The importance of the chemical structure of oxygenated compounds for the effectiveness of PM emissions reduction was considered. The results of empirical research on the influence on PM emissions of oxygenated fuels containing 12 oxygenates from chemical groups such as glycol ethers, maleates, carbonates and butanol were analyzed. The emissions tests were undertaken on a diesel passenger car over the NEDC and FTP-75 cycles. The results showed a high potential of oxygenated fuels in PM emissions reduction, even at a low oxygenates concentration of 5% v/v; namely, PM emissions were reduced by up to 32%. According to tests results, 1% of oxygen in the fuel resulted in an average reduction of PM emissions by 7% to 10%. In the view of already limited possibilities of modifying conventional parameters of diesel fuels, the use of oxygenated compounds is a promising way to trade on the potential of fuels in PM emissions reduction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference88 articles.

1. AVL Instrumentation & Test Systems AVL Tech Days 2012: Physical Background—Particle Structure, Particle Distribution, Particle Formation, Loss Mechanismshttps://www.avl.com/documents/10138/0/01-MA-Caroca.pdf/399f5ce2-4404-4de3-b906-1cf967c1437e

2. Major Chemical Elements in Soot and Particulate Matter Exhaust Emissions Generated from In-Use Diesel Engine Passenger Vehicles

3. Study on the Influence of Diesel Fuel’s Oxygenated Compounds on Exhaust Emissions from Diesel Engines;Kozak,2013

4. Particulate Emissions from Vehicles;Eastwood,2008

5. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3