Study of Effects on Performances and Emissions of a Large Marine Diesel Engine Partially Fuelled with Biodiesel B20 and Methanol

Author:

Visan Nicolae Adrian1,Niculescu Dan Catalin1,Ionescu Radu1,Dahlin Ernst2,Eriksson Magnus2,Chiriac Radu34ORCID

Affiliation:

1. Romanian Research and Development Institute for Gas Turbines COMOTI, 061126 Bucharest, Romania

2. Hedemora Turbo & Diesel, Sturegatan 2, 776 35 Hedemora, Sweden

3. Faculty of Mechanical Engineering and Mechatronics, National University for Science and Technology POLITEHNICA of Bucharest, 060042 Bucharest, Romania

4. EA7341 CMGPCE, Conservatoire National des Arts et Metiers, F-75141 Paris, France

Abstract

The impact of fossil fuel utilisation in different combustion systems on climate change due to greenhouse gas accumulation in the atmosphere is rather evident. A part of these gases comes from the large engines used for propulsion in marine applications. In the continuous global effort made by engine manufacturers to mitigate this negative impact, one way is represented by the utilisation of alternative fuels such as biodiesel and methanol, based on dedicated research to fulfil the more stringent regulations concerning pollutant emissions issued by piston heat engines. In this study, a numerical investigation was conducted on a four-stroke large marine diesel engine (ALCO 16V 251C) at several engine speeds and full load conditions. Different blends of diesel–methanol and biodiesel B20–methanol with methanol mass fractions of 10% and 20% were considered for theoretical analysis in two techniques of methanol supply: direct injection mode of a blend of base fuel diesel/biodiesel B20 with methanol and injection of methanol after the intercooler, and direct injection of the base fuel. The results show that, if 10% in power loss can be acceptable, then for diesel–methanol 10%, in the direct injection technology, the NOx emission can be reduced up to 19%, but with a compromise of an 8% increase in SOOT emission, while for biodiesel B20–methanol 10%, with the same direct injection method, the NOx emissions increase by up to 58% with the benefit of reducing SOOT by up to 23% relative to the original diesel fuel operation. For a 20% methanol fraction in blend fuel, the drop in power is more than 10% regardless of the method of methanol supply and the base fuel, diesel, or B20 used.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3