Dynamic Decoupling and Trajectory Tracking for Automated Vehicles Based on the Inverse System

Author:

Yu YinghongORCID,Li Yinong,Liang Yixiao,Zheng Ling,Yang Wei

Abstract

A simultaneous trajectory tracking and stability control method is present for the four-wheel independent drive (4WID) automated vehicles to handle dynamic coupling maneuvers. To conquer the disadvantage that attendant disturbances caused by the dynamic coupling of traditional decentralized control methods degenerate the trajectory tracking accuracy, the proposed method takes advantage of the idea of decoupling to optimize the tracking performance. After establishing the dynamic model of the 4WID automated vehicles, the coupling mechanism of the vehicle dynamic control and its negative effect on trajectory tracking were studied at first. The inverse system model was then determined by machine learning and connected in series with the controlled object to form a pseudo linear system to realize dynamic decoupling. Finally, differing from previous tracking methods following the apparent lateral position and longitudinal velocity references, the pseudo linear system tracks the ideal intermediate targets transferred from the target trajectory, that is, the accelerations of vehicle in longitudinal, lateral and yaw directions, to indirectly achieve trajectory tracking and validly restrain the vehicle motion. The effectiveness of the proposed method, i.e., the high tracking accuracy and the stable driving performance, is verified through three coupling driving scenarios in the CarSim-Simulink co-simulations platform.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Trajectory Tracking of Autonomous Vehicle Based on Lateral and Longitudinal Cooperative Control;SAE Technical Paper Series;2024-03-29

2. Trajectory tracking control of autonomous vehicles based on Lagrangian neural network dynamics model;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-01-09

3. Research on Tracking Control Algorithm Scheduling Strategy Based on Motion Trajectory Coupling State;2023 IEEE International Conference on Unmanned Systems (ICUS);2023-10-13

4. Emergency Collision Avoidance Method with Moving Obstacles Based on Piecewise Polynomial;International Journal of Automotive Technology;2023-07-19

5. Beyond the Limit Automated Driving with Performance Constrained Reachability Analysis;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3