Author:
Guo Jun-Tao,Malik Fareeha
Abstract
Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB–ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).
Funder
National Institutes of Health
Subject
Molecular Biology,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献