Affiliation:
1. Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA
2. Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
Abstract
Lumican is an extracellular matrix proteoglycan known to regulate toll-like receptor (TLR) signaling in innate immune cells. In experimental settings, lumican suppresses TLR9 signaling by binding to and sequestering its synthetic ligand, CpG-DNA, in non-signal permissive endosomes. However, the molecular details of lumican interactions with CpG-DNA are obscure. Here, the 3-D structure of the 22 base-long CpG-DNA (CpG ODN_2395) bound to lumican or TLR9 were modeled using homology modeling and docking methods. Some of the TLR9-CpG ODN_2395 features predicted by our model are consistent with the previously reported TLR9-CpG DNA crystal structure, substantiating our current analysis. Our modeling indicated a smaller buried surface area for lumican-CpG ODN_2395 (1803 Å2) compared to that of TLR9-CpG ODN_2395 (2094 Å2), implying a potentially lower binding strength for lumican and CpG-DNA than TLR9 and CpG-DNA. The docking analysis identified 32 amino acids in lumican LRR1–11 interacting with CpG ODN_2395, primarily through hydrogen bonding, salt-bridges, and hydrophobic interactions. Our study provides molecular insights into lumican and CpG-DNA interactions that may lead to molecular targets for modulating TLR9-mediated inflammation and autoimmunity.
Funder
National Eye Institute (NEI)/National Institutes of Health
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis