An Efficient Deep Learning Approach for DNA-Binding Proteins Classification from Primary Sequences

Author:

Ahmed Nosiba Yousif,Alsanousi Wafa Alameen,Hamid Eman Mohammed,Elbashir Murtada K.,Al-Aidarous Khadija MohammedORCID,Mohammed Mogtaba,Musa Mohamed Elhafiz M.

Abstract

AbstractAs the number of identified proteins has expanded, the accurate identification of proteins has become a significant challenge in the field of biology. Various computational methods, such as Support Vector Machine (SVM), K-nearest neighbors (KNN), and convolutional neural network (CNN), have been proposed to recognize deoxyribonucleic acid (DNA)-binding proteins solely based on amino acid sequences. However, these methods do not consider the contextual information within amino acid sequences, limiting their ability to adequately capture sequence features. In this study, we propose a novel approach to identify DNA-binding proteins by integrating a CNN with bidirectional long-short-term memory (LSTM) and gated recurrent unit (GRU) as (CNN-BiLG). The CNN-BiLG model can explore the potential contextual relationships of amino acid sequences and obtain more features than traditional models. Our experimental results demonstrate a validation set prediction accuracy of 94% for the proposed CNN-BiLG, surpassing the accuracy of machine learning models and deep learning models. Furthermore, our model is both effective and efficient, exhibiting commendable classification accuracy based on comparative analysis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3