Dppa2/4 as a trigger of signaling pathways to promote zygote genome activation by binding to CG-rich region

Author:

Li Hanshuang1,Long Chunshen1,Xiang Jinzhu1,Liang Pengfei1,Li Xueling1,Zuo Yongchun1ORCID

Affiliation:

1. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China

Abstract

Abstract Developmental pluripotency-associated 2 (Dppa2) and developmental pluripotency-associated 4 (Dppa4) as positive drivers were helpful for transcriptional regulation of zygotic genome activation (ZGA). Here, we systematically assessed the cooperative interplay of Dppa2 and Dppa4 in regulating cell pluripotency and found that simultaneous overexpression of Dppa2/4 can make induced pluripotent stem cells closer to embryonic stem cells (ESCs). Compared with other pluripotency transcription factors, Dppa2/4 can regulate majorities of signaling pathways by binding on CG-rich region of proximal promoter (0–500 bp), of which 85% and 77% signaling pathways were significantly activated by Dppa2 and Dppa4, respectively. Notably, Dppa2/4 also can dramatically trigger the decisive signaling pathways for facilitating ZGA, including Hippo, MAPK and TGF-beta signaling pathways and so on. At last, we found alkaline phosphatase, placental-like 2 (Alppl2) was completely silenced when Dppa2 and 4 single- or double-knockout in ESC, which is consistent with Dux. Moreover, Alppl2 was significantly activated in mouse 2-cell embryos and 4–8 cells stage of human embryos, further predicted that Alppl2 was directly regulated by Dppa2/4 as a ZGA candidate driver to facilitate pre-embryonic development.

Funder

National Nature Scientific Foundation of China

Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region

Excellent Young Scholars of Inner Mongolia

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3