Abstract
This paper develops a registration architecture for the purpose of estimating relative pose including the rotation and the translation of an object in terms of a model in 3-D space based on 3-D point clouds captured by a 3-D camera. Particularly, this paper addresses the time-consuming problem of 3-D point cloud registration which is essential for the closed-loop industrial automated assembly systems that demand fixed time for accurate pose estimation. Firstly, two different descriptors are developed in order to extract coarse and detailed features of these point cloud data sets for the purpose of creating training data sets according to diversified orientations. Secondly, in order to guarantee fast pose estimation in fixed time, a seemingly novel registration architecture by employing two consecutive convolutional neural network (CNN) models is proposed. After training, the proposed CNN architecture can estimate the rotation between the model point cloud and a data point cloud, followed by the translation estimation based on computing average values. By covering a smaller range of uncertainty of the orientation compared with a full range of uncertainty covered by the first CNN model, the second CNN model can precisely estimate the orientation of the 3-D point cloud. Finally, the performance of the algorithm proposed in this paper has been validated by experiments in comparison with baseline methods. Based on these results, the proposed algorithm significantly reduces the estimation time while maintaining high precision.
Funder
Ministry of Science and Technology, Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献