PiezoMEMS Nonlinear Low Acceleration Energy Harvester with an Embedded Permanent Magnet

Author:

Jackson NathanORCID

Abstract

Increasing the power density and bandwidth are two major challenges associated with microelectromechanical systems (MEMS)-based vibration energy harvesting devices. Devices implementing magnetic forces have been used to create nonlinear vibration structures and have demonstrated limited success at widening the bandwidth. However, monolithic integration of a magnetic proof mass and optimizing the magnet configuration have been challenging tasks to date. This paper investigates three different magnetic configurations and their effects on bandwidth and power generation using attractive and repulsive magnetic forces. A piezoMEMS device was developed to harvest vibration energy, while monolithically integrating a thick embedded permanent magnet (NdFeB) film. The results demonstrated that repulsive forces increased the bandwidth for in-plane and out-of-plane magnetic configurations from <1 to >7 Hz bandwidths. In addition, by using attractive forces between the magnets, the power density increased while decreasing the bandwidth. Combining these forces into a single device resulted in increased power and increased bandwidth. The devices created in this paper focused on low acceleration values (<0.1 g) and low-frequency applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3