Passively Tuning the Resonant Frequency of Kinetic Energy Harvesters Using Distributed Loaded Proof Mass

Author:

Adhikari Rahul1ORCID,Jackson Nathan12ORCID

Affiliation:

1. Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87106, USA

2. Nanoscience and Microsystems Engineering, University of New Mexico, Albuquerque, NM 87106, USA

Abstract

The inability to tune the frequency of MEMS vibration energy-harvesting devices is considered to be a major challenge which is limiting the use of these devices in real world applications. Previous attempts are either not compatible with microfabrication, have large footprints, or use complex tuning methods which consume power. This paper reports on a novel passive method of tuning the frequency by embedding solid microparticle masses into a stationary proof mass with an array of cavities. Altering the location, density, and volume of embedded solid filler will affect the resonant frequency, resulting in tuning capabilities. The experimental and computational validation of changing and tuning the frequency are demonstrated. The change in frequency is caused by varying the location of the particle filler in the proof mass to alter the center of gravity. The goal of this study was to experimentally and numerically validate the concept using macro-scale piezoelectric energy-harvesting devices, and to determine key parameters that affect the resolution and range of the frequency-tuning capabilities. The experimental results demonstrated that the range of the frequency tuning for the particular piezoelectric cantilever that was used was between 20.3 Hz and 49.1 Hz. Computational simulations gave similar results of 23.7 Hz to 49.4 Hz. However, the tuning range could be increased by altering the proof mass and cantilever design, which resulted in a tuning range from 144.6 Hz to 30.2 Hz. The resolution of tuning the frequency was <0.1 Hz.

Funder

National Science Foundation’s EPSCoR Program

National Science Foundation’s NSF CAREER program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3