Wide Bandwidth Vibration Energy Harvester with Embedded Transverse Movable Mass

Author:

Jackson NathanORCID,Rodriguez Luis A.,Adhikari RahulORCID

Abstract

One of the biggest challenges associated with vibration energy harvesters is their limited bandwidth, which reduces their effectiveness when utilized for Internet of Things applications. This paper presents a novel method of increasing the bandwidth of a cantilever beam by using an embedded transverse out-of-plane movable mass, which continuously changes the resonant frequency due to mass change and non-linear dynamic impact forces. The concept was investigated through experimentation of a movable mass, in the form of a solid sphere, that was embedded within a stationary proof mass with hollow cylindrical chambers. As the cantilever oscillated, it caused the movable mass to move out-of-plane, thus effectively altering the overall effective mass of the system during operation. This concept combined high bandwidth non-linear dynamics from the movable mass with the high power linear dynamics from the stationary proof mass. This paper experimentally investigated the frequency and power effects of acceleration, the amount of movable mass, the density of the mass, and the size of the movable mass. The results demonstrated that the bandwidth can be significantly increased from 1.5 Hz to >40 Hz with a transverse movable mass, while maintaining high power output. Dense movable masses are better for high acceleration, low frequency applications, whereas lower density masses are better for low acceleration applications.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3