A Novel Method for Friction Coefficient Calculation in Metal Sheet Forming of Axis-Symmetric Deep Drawing Parts

Author:

Xia JianshengORCID,Zhao Jun,Dou Shasha,Shen Xing

Abstract

Friction is one of the important factors in sheet metal forming. It greatly affects dynamic behaviors of metal sheets and stress and strain distributions in the metal sheets. In this study, deformation characteristics, stress–strain distribution, and change law of symmetrical parts in the process of deep drawing are analyzed using a new theoretical model based on the plastic flow law and partitioning the forming area. In the model, the least-square method is used to linearize the friction coefficient in nonlinear problems and reverse the calculation of friction coefficients to interpret the friction coefficient. To evaluate the model, the friction coefficient in sheet metal drawing of axis-symmetric deep drawing parts under various friction conditions was measured using a self-developed measuring system. The comparison between the experimental results and the calculation using the model shows a good agreement. The results show that the drawing force increases with the increase in punch depth; the friction coefficient decreases with the rise in punch depth. The friction coefficient obtained by fitting is relatively stable, and the average error is less than 3%. Using the friction coefficient model in finite element simulation analysis, it shows that the thickness and blank shape errors are less than 5%. The novel method studied in this paper shows great significance in support for theoretical research, numerical simulation research, and sheet metal stamping performance evaluation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3