Analysis of Sheet Metal Forming (Warm Stamping Process): A Study of the Variable Friction Coefficient on 6111 Aluminum Alloy

Author:

Dou Shasha,Wang Xiaoping,Xia Jason,Wilson Lisa

Abstract

Aluminum alloy materials have been widely used in automobile, aerospace and other fields because of their low density, high specific strength and corrosion resistance. The process of the warm forming of aluminum alloy improves the formability of aluminum alloy sheets, reduces the deformation resistance and spring-back and improves the forming accuracy and quality of parts. For these reasons, it is frequently used. In this work, the effects of temperature, sliding speed and normal load on the friction coefficient of 6111 aluminum alloy were studied by using a CFT-I (Equipment Type) friction tester under boundary lubrication conditions. The surface morphology of the sample after the friction test was observed by optical microscopy. The results show that the surface quality of aluminum alloy is better at 200 °C, which was used as the temperature in the experiments. According to the test measurement results, the friction coefficient increases with the increase in temperature and decreases with the increase in sliding speed and normal load. Variable friction coefficient models of sliding speed and normal load were established. Using the optimal parameter combination as the simulation parameter, the established variable friction coefficient models were input into numerical simulation software, and two sets of comparative simulations were established. The thickness distribution of the sheet material obtained through the simulation was compared with the actual test measurement. Further verification was carried out through the amount of spring-back. The results show that the thickness distribution and spring-back of the sheet obtained by the variable friction coefficient model are closer to the actual measurements (the error of the spring-back angle decreased from more than 20% to less than 10%), which verifies the reliability and accuracy of the variable friction coefficient model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3