Modeling Hourly Soil Temperature Using Deep BiLSTM Neural Network

Author:

Li Cong,Zhang YaonanORCID,Ren Xupeng

Abstract

Soil temperature (ST) plays a key role in the processes and functions of almost all ecosystems, and is also an essential parameter for various applications such as agricultural production, geothermal development, and their utilization. Although numerous machine learning models have been used in the prediction of ST, and good results have been obtained, most of the current studies have focused on daily or monthly ST predictions, while hourly ST predictions are scarce. This paper presents a novel scheme for forecasting the hourly ST using weather forecast data. The method considers the hourly ST prediction to be the superposition of two parts, namely, the daily average ST prediction and the ST amplitude (the difference between the hourly ST and the daily average ST) prediction. According to the results of correlation analysis, we selected nine meteorological parameters and combined two temporal parameters as the input vectors for predicting the daily average ST. For the task of predicting the ST amplitude, seven meteorological parameters and one temporal parameter were selected as the inputs. Two submodels were constructed using a deep bidirectional long short-term memory network (BiLSTM). For the task of hourly ST prediction at five different soil depths at 30 sites, which are located in 5 common climates in the United States, the results showed the method proposed in this paper performs best at all depths for 30 stations (100% of all) for the root mean square error (RMSE), 27 stations (90% of all) for the mean absolute error (MAE), and 30 stations (100% of all) for the coefficient of determination (R2), respectively. Moreover, the method adopted in this study displays a stronger ST prediction ability than the traditional methods under all climate types involved in the experiment, the hourly ST produced by it can be used as a driving parameter for high-resolution biogeochemical models, land surface models and hydrological models and can provide ideas for an analysis of other time series data.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3