Predicting forest soil temperatures from monthly air temperature and precipitation records

Author:

Yin Xiwei,Arp Paul A.

Abstract

A process-oriented forest soil temperature model, FORSTEM, is presented. FORSTEM considers vertical heat conduction as well as freezing and thawing, and it lumps the effects of forest canopies on soil surface temperature with the surface heat transfer coefficient. It runs in conjunction with the forest hydrologic model, FORHYM. FORSTEM and FORHYM input is limited to (i) air temperature; (ii) precipitation and its snow fraction; and (iii) descriptive site information (latitude, elevation, slope, aspect, forest coverage, and soil layer thickness and texture). FORSTEM uses generalized parameters derived from existing empirical information. The model was applied to 10 different cover type–site conditions, including lawns, deciduous forests, and coniferous forests before and after clear-cutting in Ontario, Quebec, New Brunswick, and Colorado. The only model parameter we calibrated for different sites was the effective ground/air conductance ratio. The ratio was found to be a function of incoming solar radiation and vegetative area index. Differences between monthly simulations and field measurements fell within ± 1.5 °C for at least about three-quarters of the data cases at individual sites. Major exceptions occurred when temperature measurements showed no damping down the soil profile or with soils containing large air gaps between coarse rock fragments.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3