3D–3D Computations on Submerged-Driftwood Motions in Water Flows with Large Wood Density around Driftwood Capture Facility

Author:

Kimura IchiroORCID,Kang TaeunORCID,Kato Kazuo

Abstract

The accumulation of driftwood during heavy rainfall may block river channels and damage structures. It is necessary to mitigate such effects by periodically capturing and removing driftwood from rivers. In this study, the behavior of driftwood in open-channel flows with a relatively large wood density was modeled numerically. The water flow and driftwood motion were solved three-dimensionally, with an Euler-type flow model coupled with a Lagrange-type driftwood motion model. A piece of driftwood was modeled as a set of connected spherical elements in a straight line for easy analysis using a discrete element method. Wood with specific gravity exceeding 1 will travel along a position near the riverbed and will be affected by bed friction. In addition, friction forces for sliding and rolling motions are considerably different. Therefore, in the numerical model, a bed friction term was introduced between the bed and driftwood considering the anisotropy of the friction force. The variation in the drag force of water flow on driftwood was also considered depending on the angle between the driftwood trunkwise direction and flow direction. The model was applied under the same conditions as those used in a laboratory experiment on driftwood behavior around an inlet-type driftwood capture facility. The computational results showed that the proposed model could qualitatively reproduce the driftwood behavior around the capture facility. The secondary flow patterns at the approaching reach and the capture ratio were found to be strongly affected by the turbulence model and the Manning roughness coefficient.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3