Modeling Large Wood Transport in Semi-Congested Regime with Multiple Entry Points

Author:

Persi ElisabettaORCID,Meninno Sabrina,Petaccia GabriellaORCID,Sibilla Stefano,Armanini Aronne

Abstract

Wood transport during flood events can increase inundation risk and should be included in numerical models to estimate the associated residual risk. This paper presents the application of a fully Eulerian model that considers floating wood as a passive superficial pollutant through the adaptation of the advection–diffusion equation. A set of experiments is performed in a sinusoidal flume with a contraction to model semi-congested wood transport. The variation of the log release position replicates the possible variability of large wood entrainment during real events. The experiments are used to validate the numerical model, providing a comparison of the wood mass transport. Different release modes are also tested. The model predicts the position of the released logs and the overall transported mass, independently of the release position and modes, with an accuracy that varies along the flume length and across the flume axis. The analysis of the experimental and numerical transport velocity shows that modulation of the transport velocity is needed to ensure adequate model performances for semi-congested conditions.

Funder

Fondazione Cariplo

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3