Two-dimensional numerical modeling of wood transport

Author:

Ruiz-Villanueva Virginia1,Bladé Ernest2,Sánchez-Juny Martí2,Marti-Cardona Belén2,Díez-Herrero Andrés1,Bodoque José María3

Affiliation:

1. Department of Research and Geoscientific Prospective, Geological Survey of Spain, Instituto Geológico Minero de España (IGME), Ríos Rosas 23, E-28003 Madrid, Spain

2. Flumen Research Institute, Universitat Politècnica de Catalunya – Barcelona Tech, Jordi Girona 1-3, (D1), E-08034, Barcelona, Spain

3. Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla – La Mancha, Avda. Carlos III s/n, E-45071 Toledo, Spain

Abstract

The transport of wood material in rivers has been the subject of various studies in recent years. Most research has focused on the ecological and geomorphologic role of wood, its recruitment processes and spatial distribution in streams. In this study, we focused on wood transport dynamics, and we have developed a numerical model to simulate wood transport coupled with a two-dimensional (2D) hydrodynamic model. For this purpose, wood drag forces were incorporated as additional source terms into the shallow water equations, which are solved together with wood transport by using the finite volume method. This new tool has been implemented as a computational module into ‘Iber’, a 2D hydraulic simulation software. The new module analyzes the initial motion threshold of wood based on the balance of forces involved in the wood's movement, and computes the position and velocity of differently shaped logs using a kinematic approach. The method also considers the interaction between the logs themselves and between the logs and the channel walls or boundaries. Flume experiments were used in a straight channel with obstructions to validate the model's capacity to accurately reproduce the movement of floating logs.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3