Potential of Forest Parameter Estimation Using Metrics from Photon Counting LiDAR Data in Howland Research Forest

Author:

Chen Bowei,Pang Yong,Li Zengyuan,North PeterORCID,Rosette Jacqueline,Sun Guoqing,Suárez Juan,Bye Iain,Lu Hao

Abstract

ICESat-2 is the new generation of NASA’s ICESat (Ice, Cloud and land Elevation Satellite) mission launched in September 2018. We investigate the potential of forest parameter estimation using metrics from photon counting LiDAR data, using an integrated dataset including photon counting LiDAR data from SIMPL (the Slope Imaging Multi-polarization Photon-counting LiDAR), airborne small footprint LiDAR data from G-LiHT and a stem map in Howland Research Forest, USA. First, we propose a noise filtering method based on a local outlier factor (LOF) with elliptical search area to separate the ground and canopy surfaces from noise photons. Next, a co-registration technique based on moving profiling is applied between SIMPL and G-LiHT data to correct geolocation error. Then, we calculate height metrics from both SIMPL and G-LiHT. Finally, we investigate the relationship between the two sets of metrics, using a stem map from field measurement to validate the results. Results of the ground and canopy surface extraction show that our methods can detect the potential signal photons effectively from a quite high noise rate environment in relatively rough terrain. In addition, results from co-registration between SIMPL and G-LiHT data indicate that the moving profiling technique to correct the geolocation error between these two datasets achieves favorable results from both visual and statistical indicators validated by the stem map. Tree height retrieval using SIMPL showed error of less than 3 m. We find good consistency between the metrics derived from the photon counting LiDAR from SIMPL and airborne small footprint LiDAR from G-LiHT, especially for those metrics related to the mean tree height and forest fraction cover, with mean R 2 value of 0.54 and 0.6 respectively. The quantitative analyses and validation with field measurements prove that these metrics can describe the relevant forest parameters and contribute to possible operational products from ICESat-2.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3