Systematic Evaluation of Multi-Resolution ICESat-2 Canopy Height Data: A Case Study of the Taranaki Region

Author:

Chen Feng1,Zhang Xuqing1,Wang Longyu1,Du Bing1,Dang Songya1,Wang Linwei1

Affiliation:

1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130061, China

Abstract

Forest canopy height data are essential to assessing forest biomass and carbon storage, and they can be efficiently retrieved using the Advanced Terrain Laser Altimetry System (ATLAS) onboard ICESat-2. However, due to the sparse and discrete distribution of ATLAS footprints, the wall-to-wall mapping of forest canopy heights requires a combination of other ancillary data. In order to match the ATLAS data with ancillary data, or estimate higher-resolution canopy heights, the standard ATLAS canopy height products (ATL08), reported at a fixed step size of 100 m (12 m × 100 m), are typically divided into 30 m step sizes. There is little concern about the accuracy of the generated 30 m segment (12 m × 30 m) dataset. Furthermore, previous studies have primarily evaluated the along-track performance of the canopy height product, rather than the ability of ATLAS to provide an accurate representation of canopy heights at the pixel-wise level. In this study, we use airborne LiDAR data as references with which to evaluate the along-track accuracy of 30 m segment canopy height products and their accuracy in representing canopy height at the pixel-wise level. A framework method for spatially matching ATLAS canopy height estimate data with ancillary data accurately is also established in this study. This enables the use of ATLAS data to characterize pixel-wise canopy heights more precisely. The results show that the accuracy of the 30 m segment version dataset in representing the pixel-wise canopy heights (R2 = 0.38, RMSE = 8.37 m) is lower than its along-track accuracy (R2 = 0.44, RMSE = 7.63 m). Using only the nighttime data for the Taranaki region, the proposed method improves the estimation of pixel-wise forest canopy heights, with the R2 increasing from 0.49 to 0.59, the RMSE decreasing from 7.48 m to 5.51 m, and the %RMSE decreasing from 36.7% to 27.6%. This study contributes to understanding the accuracy of the ATLAS in reflecting pixel-wise canopy height and provides a new way of spatially matching ATLAS canopy height data with other remote sensing data.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3