Gearbox Fault Diagnosis Based on Multi-Sensor Deep Spatiotemporal Feature Representation

Author:

Xie Fengyun123,Wang Gan1,Shang Jiandong1,Sun Enguang1,Xie Sanmao123

Affiliation:

1. School of Mechanical Electrical and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

2. State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

3. Life-Cycle Technology Innovation Center of Intelligent Transportation Equipment, Nanchang 330013, China

Abstract

The vibration signal acquired by a single sensor contains limited information and is easily interfered by noise signals, resulting in the inability to fully express the operating characteristics and state of a gearbox. To address this problem, our study proposes a gearbox fault diagnosis method based on multi-sensor deep spatiotemporal feature representation. This method utilizes two vibration sensors to obtain the vibration information of the gearbox. A fault diagnosis model (PCNN–GRU) combined with a parallel convolutional neural network (PCNN) and gated recurrent unit (GRU) was used to fuse the gearbox vibration information. The parallel convolutional neural network was used to extract the spatial information of the vibration signals collected by different position sensors, and the timing information was mined through the gated recurrent unit. The deep spatiotemporal features that fuse the multi-sensor spatial and temporal information were composed. The collected multi-sensor vibration signals were directly input into the PCNN–GRU model, and an end-to-end intelligent diagnosis of the gearbox faults was realized. Finally, through experimental verification, the accuracy rate of this model can reach up to 99.92%. Compared with other models, this model has a higher diagnostic accuracy and stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Carrier and Equipment Key Laboratory Project of the Ministry of Education

Project of Jiangxi Provincial Department of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3