Multi-head spatio-temporal attention based parallel GRU architecture: a novel multi-sensor fusion method for mechanical fault diagnosis

Author:

Li YaozongORCID,Luo Xiong,Xie Yuhao,Zhao Wenbing

Abstract

Abstract The sensor signals with multiple measuring points and data types not only bring sufficient information, but also put forward more stringent requirements for multi-sensor fusion efficiency and fault feature extraction capability. The redundancy and conflicts in the information of multi-sensor signals often hinder the accurate extraction of crucial fault features. To address this problem, our study proposes an intelligent mechanical fault diagnosis method, which is based on a multi-head spatio-temporal attention mechanism and parallel gated recurrent units (GRUs) architecture. This method utilizes multiple attention heads to model the correlation information in spatial and temporal dimensions, and employs a parallel GRU network for targeted feature extraction. Finally, it combines local features from different attention heads to achieve flexible scheduling of various spatio-temporal attention modes. This novel application and fusion approach of multi-head attention enables accurate identification of the spatio-temporal value differences in the collected multi-sensor signals from multiple perspectives. Experimental results on multiple mechanical fault datasets show that the proposed method performs well in multi-sensor signals based mechanical fault diagnosis tasks and can maintain effectiveness under small samples and imbalanced data conditions.

Funder

Scientific and Technological Innovation Foundation of Foshan under Grants

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3