Fault diagnosis of hydroelectric units based on GASF and parallel CNN-GRU-MSA

Author:

Li XiangORCID,Zeng Yun,Qian Jing,Guo Yakun,Zhao XiaoJia,Wang Yang,Zhao Xiangkuan

Abstract

Abstract Diagnosing the vibration signals of hydropower units is crucial for safe and stable operation. This paper proposes a fault diagnosis method for hydropower units based on Gramian Angular Summation Fields (GASF) and parallel convolutional neural networks-gated recurrent unit-multi-headed self-attention (CNN-GRU-MSA). The original data forms a double branch, and the first branch selects the original timing signal for feature extraction using GRU. The second branch converts the timing signal into a 2D image using GASF for feature extraction using CNN, and the merged signal is enhanced with MSA for feature values. The experimental results show that the accuracy of the method reaches 97.2%. In order to explore the generalization and practicability of the proposed model, the public dataset of Jiangnan University is introduced for re-analysis. The diagnostic result of 600 rpm is 98.5%, and the diagnostic result of 800 rpm and 1000 rpm is 100%, significantly better than the other comparative models. This study can be valuable to the hydropower unit’s fault diagnosis methods.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3