Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines

Author:

Khan AsifORCID,Hwang Hyunho,Kim Heung SooORCID

Abstract

As failures in rotating machines can have serious implications, the timely detection and diagnosis of faults in these machines is imperative for their smooth and safe operation. Although deep learning offers the advantage of autonomously learning the fault characteristics from the data, the data scarcity from different health states often limits its applicability to only binary classification (healthy or faulty). This work proposes synthetic data augmentation through virtual sensors for the deep learning-based fault diagnosis of a rotating machine with 42 different classes. The original and augmented data were processed in a transfer learning framework and through a deep learning model from scratch. The two-dimensional visualization of the feature space from the original and augmented data showed that the latter’s data clusters are more distinct than the former’s. The proposed data augmentation showed a 6–15% improvement in training accuracy, a 44–49% improvement in validation accuracy, an 86–98% decline in training loss, and a 91–98% decline in validation loss. The improved generalization through data augmentation was verified by a 39–58% improvement in the test accuracy.

Funder

National Research Foundation of Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3