Optimizing the Performance of Breast Cancer Classification by Employing the Same Domain Transfer Learning from Hybrid Deep Convolutional Neural Network Model

Author:

Alzubaidi LaithORCID,Al-Shamma OmranORCID,Fadhel Mohammed A.,Farhan Laith,Zhang Jinglan,Duan Ye

Abstract

Breast cancer is a significant factor in female mortality. An early cancer diagnosis leads to a reduction in the breast cancer death rate. With the help of a computer-aided diagnosis system, the efficiency increased, and the cost was reduced for the cancer diagnosis. Traditional breast cancer classification techniques are based on handcrafted features techniques, and their performance relies upon the chosen features. They also are very sensitive to different sizes and complex shapes. However, histopathological breast cancer images are very complex in shape. Currently, deep learning models have become an alternative solution for diagnosis, and have overcome the drawbacks of classical classification techniques. Although deep learning has performed well in various tasks of computer vision and pattern recognition, it still has some challenges. One of the main challenges is the lack of training data. To address this challenge and optimize the performance, we have utilized a transfer learning technique which is where the deep learning models train on a task, and then fine-tune the models for another task. We have employed transfer learning in two ways: Training our proposed model first on the same domain dataset, then on the target dataset, and training our model on a different domain dataset, then on the target dataset. We have empirically proven that the same domain transfer learning optimized the performance. Our hybrid model of parallel convolutional layers and residual links is utilized to classify hematoxylin–eosin-stained breast biopsy images into four classes: invasive carcinoma, in-situ carcinoma, benign tumor and normal tissue. To reduce the effect of overfitting, we have augmented the images with different image processing techniques. The proposed model achieved state-of-the-art performance, and it outperformed the latest methods by achieving a patch-wise classification accuracy of 90.5%, and an image-wise classification accuracy of 97.4% on the validation set. Moreover, we have achieved an image-wise classification accuracy of 96.1% on the test set of the microscopy ICIAR-2018 dataset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3