A framework for classifying breast cancer via heterogenetic attention mechanism and optimized feature selection

Author:

Swetha A.V.S.1,Bala Manju2,Sharma Kapil1

Affiliation:

1. Department of Information Technology, Delhi Technological University, Bawana Road, New Delhi, India

2. Department of Computer Science, Indraprastha College for Women, Shamnath Marg, Civil Lines, New Delhi, India

Abstract

Breast cancer poses a significant threat to women’s health, emphasizing the crucial role of timely detection. Traditional pathology reports, though widely used, face challenges prompting the development of automated Deep Learning (DL) tools. DL models, gaining traction in radiology, offer precise diagnoses; however, issues with generalization on varying dataset sizes persist. This paper introduces a computationally efficient DL framework, addressing dataset imbalance through a hybrid model design, ensuring both accuracy and speed in breast cancer image classification. Proposed model novel design excels in accuracy and generalization across medical imaging datasets, providing a robust tool for precise diagnostics. The proposed model integrates features from two classifiers, Inception ResNet V2 and Vision Transformers (ViT), to enhance the classification of breast cancer. This synergistic blend enhances adaptability, ensuring consistent performance across diverse dataset scales. A key contribution is the introduction of an Efficient Attention Mechanism within one of the classifiers, optimizing focus on critical features for improved accuracy and computational efficiency. Further, a Resource-Efficient Optimization model through feature selection is proposed, streamlining computational usage without compromising accuracy. Addressing the inherent heterogeneity within classifiers, our framework integrates high dimensional features comprehensively, leading to more accurate tumor class predictions. This consideration of heterogeneity marks a significant leap forward in precision for breast cancer diagnosis. An extensive analysis on datasets, BreakHis and BACH, that are imbalanced in nature is conducted by evaluating complexity, performance, and resource usage. Comprehensive evaluation using the datasets and standard performance metrics accuracy, precision, Recall, F1-score, MCC reveals the model’s high efficacy, achieving a testing accuracy of 0.9936 and 0.994, with precision, recall, F1-score and MCC scores of 0.9919, 0.987, 0.9898, 0.9852 and 0.989, 1.0, 0.993, 0.988 on the BreakHis and BACH datasets, respectively. Our proposed model outperforms state-of-the-art techniques, demonstrating superior accuracy across different datasets, with improvements ranging from 0.25% to 15% on the BACH dataset and from 0.36% to 15.02% on the BreakHis dataset. Our results position the framework as a promising solution for advancing breast cancer prediction in both clinical and research applications. The collective contributions, from framework and hybrid model design to feature selection and classifier heterogeneity consideration, establish a holistic and state-of-the-art approach, significantly improving accuracy and establishing optimization in breast cancer classification from MRI images. Future research for the DL framework in breast cancer image classification includes enhancing interpretability, integrating multi-modal data, and developing personalized treatments.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3