A comprehensive review of model compression techniques in machine learning

Author:

Dantas Pierre VilarORCID,Sabino da Silva Waldir,Cordeiro Lucas Carvalho,Carvalho Celso Barbosa

Abstract

Abstract This paper critically examines model compression techniques within the machine learning (ML) domain, emphasizing their role in enhancing model efficiency for deployment in resource-constrained environments, such as mobile devices, edge computing, and Internet of Things (IoT) systems. By systematically exploring compression techniques and lightweight design architectures, it is provided a comprehensive understanding of their operational contexts and effectiveness. The synthesis of these strategies reveals a dynamic interplay between model performance and computational demand, highlighting the balance required for optimal application. As machine learning (ML) models grow increasingly complex and data-intensive, the demand for computational resources and memory has surged accordingly. This escalation presents significant challenges for the deployment of artificial intelligence (AI) systems in real-world applications, particularly where hardware capabilities are limited. Therefore, model compression techniques are not merely advantageous but essential for ensuring that these models can be utilized across various domains, maintaining high performance without prohibitive resource requirements. Furthermore, this review underscores the importance of model compression in sustainable artificial intelligence (AI) development. The introduction of hybrid methods, which combine multiple compression techniques, promises to deliver superior performance and efficiency. Additionally, the development of intelligent frameworks capable of selecting the most appropriate compression strategy based on specific application needs is crucial for advancing the field. The practical examples and engineering applications discussed demonstrate the real-world impact of these techniques. By optimizing the balance between model complexity and computational efficiency, model compression ensures that the advancements in AI technology remain sustainable and widely applicable. This comprehensive review thus contributes to the academic discourse and guides innovative solutions for efficient and responsible machine learning practices, paving the way for future advancements in the field. Graphical abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3