A Study on Persistence of GAN-Based Vision-Induced Gustatory Manipulation

Author:

Nakano KizashiORCID,Horita Daichi,Kawai Norihiko,Isoyama NaoyaORCID,Sakata Nobuchika,Kiyokawa KiyoshiORCID,Yanai KeijiORCID,Narumi TakujiORCID

Abstract

Vision-induced gustatory manipulation interfaces can help people with dietary restrictions feel as if they are eating what they want by modulating the appearance of the alternative foods they are eating in reality. However, it is still unclear whether vision-induced gustatory change persists beyond a single bite, how the sensation changes over time, and how it varies among individuals from different cultural backgrounds. The present paper reports on a user study conducted to answer these questions using a generative adversarial network (GAN)-based real-time image-to-image translation system. In the user study, 16 participants were presented somen noodles or steamed rice through a video see-through head mounted display (HMD) both in two conditions; without or with visual modulation (somen noodles and steamed rice were translated into ramen noodles and curry and rice, respectively), and brought food to the mouth and tasted it five times with an interval of two minutes. The results of the experiments revealed that vision-induced gustatory manipulation is persistent in many participants. Their persistent gustatory changes are divided into three groups: those in which the intensity of the gustatory change gradually increased, those in which it gradually decreased, and those in which it did not fluctuate, each with about the same number of participants. Although the generalizability is limited due to the small population, it was also found that non-Japanese and male participants tended to perceive stronger gustatory manipulation compared to Japanese and female participants. We believe that our study deepens our understanding and insight into vision-induced gustatory manipulation and encourages further investigation.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3