Accelerated Diffusion-Weighted MR Image Reconstruction Using Deep Neural Networks

Author:

Aamir Fariha,Aslam IbtisamORCID,Arshad Madiha,Omer Hammad

Abstract

AbstractUnder-sampling in diffusion-weighted imaging (DWI) decreases the scan time that helps to reduce off-resonance effects, geometric distortions, and susceptibility artifacts; however, it leads to under-sampling artifacts. In this paper, diffusion-weighted MR image (DWI-MR) reconstruction using deep learning (DWI U-Net) is proposed to recover artifact-free DW images from variable density highly under-sampled k-space data. Additionally, different optimizers, i.e., RMSProp, Adam, Adagrad, and Adadelta, have been investigated to choose the best optimizers for DWI U-Net. The reconstruction results are compared with the conventional Compressed Sensing (CS) reconstruction. The quality of the recovered images is assessed using mean artifact power (AP), mean root mean square error (RMSE), mean structural similarity index measure (SSIM), and mean apparent diffusion coefficient (ADC). The proposed method provides up to 61.1%, 60.0%, 30.4%, and 28.7% improvements in the mean AP value of the reconstructed images in our experiments with different optimizers, i.e., RMSProp, Adam, Adagrad, and Adadelta, respectively, as compared to the conventional CS at an acceleration factor of 6 (i.e., AF = 6). The results of DWI U-Net with the RMSProp, Adam, Adagrad, and Adadelta optimizers show 13.6%, 10.0%, 8.7%, and 8.74% improvements, respectively, in terms of mean SSIM with respect to the conventional CS at AF = 6. Also, the proposed technique shows 51.4%, 29.5%, 24.04%, and 18.0% improvements in terms of mean RMSE using the RMSProp, Adam, Adagrad, and Adadelta optimizers, respectively, with reference to the conventional CS at AF = 6. The results confirm that DWI U-Net performs better than the conventional CS reconstruction. Also, when comparing the different optimizers in DWI U-Net, RMSProp provides better results than the other optimizers.

Funder

University of Geneva.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

Reference42 articles.

1. McRobbie DW, Moore EA, Graves MJ, Prince MR. MRI from picture to proton. 2006. https://doi.org/10.1017/CBO9780511545405.

2. Basic MRI Physics by Evert Blink n.d. https://www.goodreads.com/book/show/16076827-basic-mri-physics (accessed July 24, 2020).

3. What Are X-Rays? Electromagnetic Spectrum Facts and Uses | Live Science n.d. https://www.livescience.com/32344-what-are-x-rays.html (accessed August 26, 2020).

4. What is a CT Scan? Procedure, Risks, and Results n.d. https://www.healthline.com/health/ct-scan (accessed August 26, 2020).

5. PET/CT - Positron Emission Tomography/Computed Tomography n.d. https://www.radiologyinfo.org/en/info.cfm?pg=pet (accessed August 26, 2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3