Gaining a Sense of Touch Object Stiffness Estimation Using a Soft Gripper and Neural Networks

Author:

Bednarek MichalORCID,Kicki PiotrORCID,Bednarek Jakub,Walas KrzysztofORCID

Abstract

Soft grippers are gaining significant attention in the manipulation of elastic objects, where it is required to handle soft and unstructured objects, which are vulnerable to deformations. The crucial problem is to estimate the physical parameters of a squeezed object to adjust the manipulation procedure, which poses a significant challenge. The research on physical parameters estimation using deep learning algorithms on measurements from direct interaction with objects using robotic grippers is scarce. In our work, we proposed a trainable system which performs the regression of an object stiffness coefficient from the signals registered during the interaction of the gripper with the object. First, using the physics simulation environment, we performed extensive experiments to validate our approach. Afterwards, we prepared a system that works in a real-world scenario with real data. Our learned system can reliably estimate the stiffness of an object, using the Yale OpenHand soft gripper, based on readings from Inertial Measurement Units (IMUs) attached to the fingers of the gripper. Additionally, during the experiments, we prepared three datasets of IMU readings gathered while squeezing the objects—two created in the simulation environment and one composed of real data. The dataset is the contribution to the community providing the way for developing and validating new approaches in the growing field of soft manipulation.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active Planar Mass Distribution Estimation with Robotic Manipulation;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

2. Learning-based robotic grasping: A review;Frontiers in Robotics and AI;2023-04-04

3. Shape-invariant Indirect Hardness Estimation for a Soft Vacuum-actuated Gripper with an Onboard Depth Camera;2023 IEEE International Conference on Soft Robotics (RoboSoft);2023-04-03

4. Object Recognition Using Mechanical Impact, Viscoelasticity, and Surface Friction During Interaction;IEEE Transactions on Haptics;2023-04

5. A novel multi objective constraints based industrial gripper design with optimized stiffness for object grasping;Robotics and Autonomous Systems;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3