A Central Array Method to Locate Chips in AOI Systems in Semiconductor Manufacturing

Author:

Fu Huichu1,Lai Yiming2,Pan Chunrong2,Zhang Siwei1,Bai Liping1,Li Jie3

Affiliation:

1. Department of Engineering Science, Faculty of Innovation Engineering, Macao University of Science and Technology, Macao 999078, China

2. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

3. IKAS Industries Company, Ltd., Chongqing 400000, China

Abstract

For semiconductor manufacturing, automatic optical inspections (AOIs) are important for chip quality inspection. An AOI system contains a robot arm, an industrial camera, a x-y platform, and a visual inspection module. Using the industrial camera, a wafer map can be obtained and then sent to the visual inspection module to compare with qualified chip features. There is a baseline in the x-y platform. Due to the limitations of the robot arm flexibility, it is difficult for the robot arm to control the angles between the chip orientation and the baseline every time, which decreases the defect recognition accuracy. This work aims to improve the defect recognition accuracy and efficiency of the AOI system. Specifically, an efficient method is presented to calculate the angle between the baseline and chip orientation. Then, the wafer map can be rotated, such that the angle equals to zero. Further, a powerful system is established to recode the rotated chip coordinate, such that the unqualified chip positions can be located efficiently. This method is called a central array method. The central array method with deep learning methods forms an AI-based AOI system. Extensive experiments demonstrate that our proposed method performs well in improving the chip quality inspection efficiency and accuracy. Nevertheless, the proposed method still has challenges in implementation since it requires integration with the manufacturing line.

Funder

Science and Technology development fund (FDCT), Macau SAR

Natural Science Foundation of Guangdong Province

National Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3