Ability-Restricted Indoor Reconnaissance Task Planning for Multiple UAVs

Author:

Zhang Ruowei,Dou Lihua,Wang Qing,Xin Bin,Ding Yulong

Abstract

For indoor multi-task planning problems of small unmanned aerial vehicles (UAVs) with different abilities, task assignment and path planning play a crucial role. The multi-dimensional requirements of reconnaissance tasks bring great difficulties to the task execution of multi-UAV cooperation. Meanwhile, the complex internal environment of buildings has a great impact on the path planning of UAVs. In this paper, the ability-restricted indoor reconnaissance task-planning (ARIRTP) problem is solved by a bi-level problem-solving framework. In the upper level, an iterative search algorithm is used to solve the task assignment problem. According to the characteristics of the problem, a solution-space compression mechanism (SSCM) is proposed to exclude solutions that do not satisfy the task requirements. In the lower level, based on a topological map, the nearest neighbor (NN) algorithm is used to quickly construct the path sequence of a UAV. Finally, the genetic algorithm (GA) and simulated annealing (SA) algorithm are applied to the upper level of the framework as iterative search algorithms, which produces two hybrid algorithms named the GA-NN and SA-NN, respectively. ARIRTP instances of different scales are designed to verify the effectiveness of the SSCM and the performance of the GA-NN and SA-NN methods. It is demonstrated that the SSCM can significantly compress the solution space and effectively improve the performance of the algorithms. The proposed bi-level problem-solving framework provides a methodology for the cooperation of multi-UAV to perform reconnaissance tasks in indoor environments. The experimental results show that the GA-NN and SA-NN methods can quickly and efficiently solve the ARIRTP problem. The performance of the GA-NN method is similar to that of the SA-NN method. The GA-NN method runs slightly faster. In large-scale instances, the performance of the SA-NN method is slightly better than that of the GA-NN method.

Funder

National Outstanding Youth Talent Support Program

NSFC

Basic Science Center Programs of the NSFC

Beijing Advanced Innovation Center for Intelligent Robots and Systems, the Shanghai Municipal Science and Technology Major Project

Shanghai Municipal Commission of Science and Technology Project

National Natural Science Fund of China

National Science Fund for Distinguished Young Scholars of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probabilistic Chain-Enhanced Parallel Genetic Algorithm for UAV Reconnaissance Task Assignment;Drones;2024-05-21

2. Communication Relay Tasks Planning Algorithm for Multiple Unmanned Aerial Vehicles;2024 8th International Conference on Robotics, Control and Automation (ICRCA);2024-01-12

3. Intelligent Crawler Robot Enable Complex Indoor Scene Reconnaissance;2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA);2023-11-28

4. An Ability-Centered Clustering Algorithm for Solving the Construction Problem of Multi-Group Unmanned Platforms;2023 IEEE International Conference on Unmanned Systems (ICUS);2023-10-13

5. Ground Risk Estimation of Unmanned Aerial Vehicles Based on Probability Approximation for Impact Positions with Multi-Uncertainties;Electronics;2023-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3