A Novel Framework for Multiple Ground Target Detection, Recognition and Inspection in Precision Agriculture Applications Using a UAV

Author:

Khan Shahbaz12ORCID,Tufail Muhammad12,Khan Muhammad Tahir12,Khan Zubair Ahmad1,Iqbal Javaid3,Wasim Arsalan4

Affiliation:

1. Department of Mechatronics Engineering, University of Engineering and Technology, Peshawar, Pakistan

2. Advanced Robotics and Automation Laboratory, National Center of Robotics and Automation (NCRA), Pakistan

3. College of Electrical and Mechanical Engineering (CEME), National University of Sciences and Technology (NUST), Islamabad, Pakistan

4. Department of Electrical Engineering, Hitec University, Taxila, Pakistan

Abstract

Unmanned Aerial Vehicles (UAVs) have been recently used for different civilian applications such as remote sensing, search, and rescue (SAR), precision agriculture (PA), etc. A UAVs ability to sense and find targets remotely and, based on that, hover close to the target for a particular action makes it an ideal platform for the aforementioned applications. There has been extensive work carried out in the field of visual-based detection, navigation, and control, but the problem of detecting different ground targets and performing certain actions is still an open research area. This study proposes a novel framework for multiple target detection, recognition, and navigation of the UAV to the desired target and closely inspect it. This proposed framework can be deployed for accurately spot spraying in PA applications or SAR. The target detection and recognition in the framework are achieved through a computationally efficient Convolutional Neural Network (CNN) trained model, whereas the close inspection of the target is achieved through a PID-based tracking algorithm which ensures the UAV hover around the target for few seconds. The developed framework performed the desired objective in five stages employing Lawson’s control theory of sense, process, compare, decide and act. The target detection and recognition in the framework were validated with the field experiment, while the entire framework was validated through a variety of simulation flights conducted in Gazebo and PX4. The experiments’ results showed the versatility of the developed system to many complex missions where the targets are added or removed.

Funder

Higher Education Commission, Pakistan

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3