Parametric and Implicit Features-Based UAV–UGVs Time-Varying Formation Tracking: Dynamic Approach

Author:

Allam Ahmed1ORCID,Nemra Abdelkrim2,Tadjine Mohamed1

Affiliation:

1. Laboratoire Commande des Processus, Ecole Nationale Polytechnique10 Rue des Frères Oudek, El Harrach 16200 Algiers, Algeria

2. VAI Laboratory, Ecole Militaire Polytechnique, Bordj El-bahri, Algiers, Algeria

Abstract

Flexible and robust Time-Varying Formation (TVF) tracking of Unmanned Ground Vehicles (UGVs) guided by an Unmanned Aerial Vehicle (UAV) is considered in this paper. The UAV–UGVs system control model is based on leader-follower approach, where the control scheme consists of two consecutive tasks, namely, deployment task and TVF tracking. Accordingly, two novel nonlinear controllers are proposed for controlling the UGVs formation. First, unlike the classical frameworks on UGVs formation tracking, for which only particular shapes are handled (e.g. circle, square, ellipse), we propose a UGVs deployment-controller ensuring to reach free-formation shapes. The key feature is in using the estimated implicit representation of the desired formation shape as a potential function to generate the UGVs reference trajectory. Second, in the TVF tracking task, a robust cascaded velocity/torque controller for UGVs is proposed based on kinematic and dynamic models. Differently from the classical backstepping framework, the key idea is in introducing an auxiliary control input, in such a way that the overall UGV dynamics is converted into a simpler and modular control structure. As such, the auxiliary input is used to control indirectly the actual UGVs velocity vector. A signum term is added to the torque-input to compensate for the unknown external disturbances and unmodeled dynamics. Numerical simulation shows the effectiveness of the proposed formation controllers compared with the case when the perfect velocity-tracking assumption holds. Experimental results are further provided using three festos Robtino robots to show the validity of the proposed TVF tracking velocity-control scheme.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3