Path Tracking for Car-like Robots Based on Neural Networks with NMPC as Learning Samples

Author:

Bai GuoxingORCID,Meng YuORCID,Liu Li,Gu Qing,Huang Jianxiu,Liang GuodongORCID,Wang Guodong,Liu Li,Chang Xinrui,Gan Xin

Abstract

In the field of path tracking for car-like robots, although nonlinear model predictive control (NMPC) can handle the system constraints well, its real-time performance is poor. To solve this problem, a neural network control method with NMPC as the learning sample is proposed. The design process of this control method includes establishing the NMPC controller based on the time-varying local model, generating learning samples based on this NMPC controller, and training to obtain the neural network controller. The proposed controller is tested by a joint simulation of MATLAB and Carsim and compared with other controllers. According to the simulation results, the accuracy of the NN controller is close to that of the NMPC controller and far better than that of the Stanley controller. In all simulations, the absolute value of displacement error of the NN controller does not exceed 0.2854 m, and the absolute value of heading error does not exceed 0.2279 rad. In addition, the real-time performance of the NN controller is better than that of the NMPC controller. The maximum time cost and average time cost of the NN controller are, respectively, 40.91% and 22.37% smaller than those of the NMPC controller under the same conditions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control;Agriculture;2023-04-15

2. Path tracking control of unmanned ground vehicles considering the signal time delay;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3