Research on Path Tracking of Articulated Steering Tractor Based on Modified Model Predictive Control

Author:

Zhou Baocheng1,Su Xin2,Yu Hongjun2,Guo Wentian2,Zhang Qing1ORCID

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. Beijing Institute of Space Launch Technology, Beijing 100076, China

Abstract

With the development of agricultural mechanization and information technology, automatic navigation tractors are becoming a more common piece of farm equipment. The accuracy of automatic navigation tractor path tracking has become critical for maximizing efficiency and crop yield. Aiming at improving path tracking control accuracy and the real-time performance of the traditional model predictive control (MPC) algorithm, the study proposed an adaptive time-domain parameter with MPC in the path tracking control of the articulated steering tractor. Firstly, the kinematics model of the articulated steering tractor was established, as well as the multi-body dynamics model by RecurDyn. Secondly, the genetic algorithm was combined with MPC. The genetic algorithm was used to calculate the optimal time domain parameters under real-time vehicle speed, vehicle posture and road conditions, and the adaptive MPC was realized. Then, path tracking simulations were conducted by combining RecurDyn and Simulink under different path types. Compared with the traditional MPC algorithm under the three paths of U-shaped, figure-eight-shaped and complex curves, the maximum lateral deviations of the modified MPC algorithm were reduced by 59.0%, 24.9% and 13.2%, respectively. At the same time, the average lateral deviation was reduced by 72%, 43.5% and 20.3%, respectively. Finally, the real path tracking tests of the articulated steering tractor were performed. The test results indicated that under the three path tracking conditions of straight line, front wheel steering and articulated steering, the maximum lateral deviation of the modified MPC algorithm was reduced by 67.8%, 44.7% and 45.1% compared with the traditional MPC. The simulation analysis and real tractor tests verified the proposed MPC algorithm, considering the adaptive time-domain parameter has a smaller deviation and can quickly eliminate the deviation and maintain tracking stability.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3