Stochastic Cell- and Bit-Discard Technique to Improve Randomness of a TRNG

Author:

Nam Jae-WonORCID,Kim JaewooORCID,Hong Jong-PhilORCID

Abstract

This paper presents a post-processing algorithm for a true random number generator (TRNG). Once the randomness of security key generation deteriorates for any reason, the entire chain of the security system can be compromised, increasing the odds of it being exploited by an attacker to retrieve information. Considering the change in the distribution of the RNG output sequence due to variations in the operating environment or the occurrence of aging phenomena in silicon-integrated circuits, a robust post-processing algorithm must be applied to an intrinsic TRNG to ensure the sustainability of a security system. Targeting high-level cryptography systems complying with the NIST 800-22a requirements, the proposed algorithm significantly improves the Hamming weight (HW) and successfully passes the NIST criteria while sacrificing approximately 20% of the entire number of available bits. The proposed algorithm improves the randomness of the TRNG through a sequential cell- and bit-level discarding technique, a cell-discard method, and focuses on improving the overall HW of the TRNG while the subsequent bit- discard method performs a Chi-square (χ2) test. To prove the concept, we programmed the proposed algorithm in a FPGA and configured the output of the manufactured TRNG chip to be post-processed and stored into on-board memory in real time. For five different ring-oscillator-based TRNG prototypes (fully custom designed in the 65 nm CMOS process), the failed intrinsic TRNG output sequences were respectively post-processed, resulting in all surpassing the NIST 800-22a requirements.

Funder

National Research Foundation of Korea

IC Design Education Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Practical Proactive DDoS-Attack Mitigation via Endpoint-Driven In-Network Traffic Control

2. Data Communications and Networking;Forouzan,2007

3. Principles of Communications;Ziemer,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3