An Area-Optimized and Power-Efficient CBC-PRESENT and HMAC-PHOTON

Author:

Ngo Chi TrungORCID,Eshraghian Jason K.,Hong Jong-Phil

Abstract

This paper introduces an area-optimized and power-efficient implementation of the Cipher Block Chaining (CBC) mode for an ultra-lightweight block cipher, PRESENT, and the Keyed-Hash Message Authentication Code (HMAC)-expanded PHOTON by using a feedback path for a single block in the scheme. The proposed scheme is designed, taped out, and integrated as a System-on-a-Chip (SoC) in a 65-nm CMOS process. An experimental analysis and comparison between a conventional implementation of CBC-PRESENT/HMAC-PHOTON with the proposed feedback basis is performed. The proposed CBC-PRESENT/HMAC-PHOTON has 128-bit plaintext/text and a 128-bit secret key, which have a gate count of 5683/20,698 and low power consumption of 1.03/2.62 mW with a throughput of 182.9/14.9 Mbps at the maximum clock frequency of 100 MHz, respectively. The overall improvement in area and power dissipation is 13/50.34% and 14.87/75.28% when compared to a conventional design.

Funder

Ministry of Education

MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program supervised by the IITP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

1. The Internet of Things (MIT Press Essential Knowledge Series);Greengard,2015

2. The Effect of IoT New Features on Security and Privacy: New Threats, Existing Solutions, and Challenges Yet to Be Solved

3. IoT: Internet of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices

4. Sp 800-38A: Recommendation for Block Cipher Modes of Operation: Methods and Techniques,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3