Publisher
Springer Nature Switzerland
Reference20 articles.
1. Adnan, M., Kalra, S., Cresswell, J.C., Taylor, G.W., Tizhoosh, H.R.: Federated learning and differential privacy for medical image analysis. Sci. Rep. 12(1), 1953 (2022)
2. Aharoni, E., et al.: HE-PEx: efficient machine learning under homomorphic encryption using pruning, permutation and expansion. arXiv preprint arXiv:2207.03384 (2022)
3. Aharoni, E., et al.: Prune, permute and expand: efficient machine learning under non-client-aided homomorphic encryption. In: Annual IEEE/ACM International Symposium on Microarchitecture (2022)
4. Al Badawi, A., et al.: Towards the AlexNet moment for homomorphic encryption: HCNN, the first homomorphic CNN on encrypted data with GPUs. IEEE Trans. Emerg. Top. Comput. 9(3), 1330–1343 (2020)
5. Alam, T., Gupta, R.: Federated learning and its role in the privacy preservation of IoT devices. Future Internet 14(9), 246 (2022)