Abstract
Conventional computers based on the Von Neumann architecture conduct computation with repeated data movements between their separate processing and memory units, where each movement takes time and energy. Unlike this approach, we experimentally study memory that can perform computation as well as store data within a generic memory array in a non-Von Neumann architecture way. Memory array can innately perform NOR operation that is functionally complete and thus realize any Boolean functions like inversion (NOT), disjunction (OR) and conjunction (AND) operations. With theoretical exploration of memory array performing Boolean computation along with storing data, we demonstrate another potential of memory array with a test chip fabricated in a 90 nm logic process. Measurement results confirm valid in-situ memory logic operations in a 32-kbit memory system that successfully operates down to 135 mV consuming 130 nW at 750 Hz, reducing power and data traffic between the units by five orders of magnitude at the sacrifice of performance.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献