Design of a Series–Parallel All-DC Power Generation System Based on a New DC Wind Turbine

Author:

Kong Qingfeng1,Song Guobing2,Li Zhanlong3,Wang Xiangjun1

Affiliation:

1. College of Electrical Engineering, Xinjiang University, Urumqi 830047, China

2. College of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. Beijing Goldwind Science & Creation Wind Power Equipment Co., Ltd., Beijing 100176, China

Abstract

Wind energy is a good alternative to fossil fuels, as the use of fossil fuels has seriously exacerbated the emission of greenhouse gases such as carbon dioxide and has greatly affected the environment. Conventional AC wind farms and AC transmission systems inevitably face problems involving reactive currents and overvoltage in the context of large-scale, large-capacity, and long-distance transmission. However, the use of all-DC wind turbines, together with DC convergence and DC transmission systems, has obvious advantages over AC transmission in terms of transmission losses and expandability. Such technology does not require bulky frequency transformers and can well solve the aforementioned problems of reactive currents and overvoltage. This paper proposes a new series–parallel structure for an all-DC wind power generation system. The series end uses a DC/DC converter based on the Cuk circuit to solve the current consistency and power balancing problems of the series wind turbine through current control, whereas the parallel end uses a large-capacity DC/DC converter based on the capacity transfer principle, to solve the problem of voltage consistency at the grid-connected end. The series part is used to increase the voltage level of the system, which can reduce the huge construction costs of offshore platforms, and the parallel part is used to increase the capacity of the system, which enables its incorporation into large-scale wind farms to achieve the replacement of fossil fuel energy.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3