Multilevel Middle Point Clamped (MMPC) Converter for DC Wind Power Applications

Author:

Karni Awais1,Beik Omid2ORCID,Gholamian Mahzad2ORCID,Homaeinezhad Mahdi2,Manzoor Muhammad Owais1

Affiliation:

1. Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58102, USA

2. Department of Electrical Engineering, Colorado School of Mines, Golden, CO 80401, USA

Abstract

This manuscript introduces a novel multilevel middle point clamped (MMPC) DC-DC converter and its associated switching scheme aimed at maintaining the desired medium-voltage DC (MVDC) collector grid within offshore all-DC wind farms. Building upon previous work by the authors, which proposed an all-DC structure serving as a benchmark system, this study explores the application of the MMPC DC-DC converter within this framework. Within the all-DC wind generation system, a 9-phase hybrid generator (HG) integrated into the wind turbine is linked to the MVDC collector grid through an AC-DC stage, which is a passive rectifier. This passive rectifier offers elevated voltage ratings and protection against back power flow. The conventional neutral point clamped (NPC) converter concept has been thoroughly investigated and expanded upon to develop the proposed MMPC DC-DC converter. The proposed MMPC DC-DC converter integrates boosting capabilities, facilitating the connection of the generator’s rectified voltage to the MVDC collector grid while regulating variable rectified voltage to a fixed MVDC collector grid voltage. The MVDC collector grid is further interconnected with high-voltage DC (HVDC) through a DC-DC converter situated in an offshore substation. This paper further provides a comprehensive overview of the proposed MMPC DC-DC converter, detailing its operational modes and corresponding switching schemes. Through an in-depth examination of operational modes, duty cycles for each switch and mode are defined, subsequently establishing the relationship between rectified input voltage and MVDC output voltage for the MMPC DC-DC converter. Utilizing the middle point clamped architecture, this innovative converter offers several advantages, including low ripple voltage, a modular structure, and reduced switching stress because of the multilevel voltage and the incorporation of a hard point, which also facilitates the capacitor voltage balancing. Finally, the effectiveness of the proposed converter is evaluated via simulation studies of a wind turbine conversion system utilizing two cascaded MMPC DC-DC converters operating under variable input voltage conditions. The simulations confirm its efficacy, supported by promising results, and validating its performance.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3