Abstract
The development of offshore wind farms (WF) is inevitable as they have exceptional resistance against climate change and produce clean energy without hazardous wastes. The offshore WF usually has a bigger generation capacity with less environmental impacts, and it is more reliable too due to stronger and consistent sea winds. The early offshore WF installations are located near the shore, whereas most modern installations are located far away from shore, generating higher power. This paradigm shift has forced the researchers and industry personnel to look deeper into transmission options, namely, high voltage AC transmission (HVAC) and high voltage DC transmission (HVDC). This evaluation can be both in terms of power carrying capability as well as cost comparisons. Additionally, different performance requirements such as power rating, onshore grid requirements, reactive power compensation, etc., must be considered for evaluation. This paper elaborately reviews and explains the offshore wind farm structure and performance requirements for bulk offshore power transfer. Based on the structure and performance requirements, both HVDC and HVAC transmission modes are compared and analyzed critically. Finally, a criterion for selection and increasing popularity of HVDC transmission is established.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献