Abstract
In this paper, the resistive switching characteristics in a Ti/HfO2: Al/Pt sandwiched structure are investigated for gradual conductance tuning inherent functions. The variation in conductance of the device under different amplitudes and voltage pulse widths is studied. At the same time, it was found that the variation in switching parameters in resistive random-access memory (RRAM) under impulse response is impacted by the initial conductance states. The device was brought to a preset resistance value range by energizing a single voltage amplitude pulse with a different number of periodicities. This is an efficient and simple programming algorithm to simulate the strength change observed in biological synapses. It exhibited an on/off of about 100, an endurance of over 500 cycles, and a lifetime (at 85 °C) of around 105 s. This multi-level switching two-terminal device can be used for neuromorphic applications to simulate the gradual potentiation (increasing conductance) and inhibition (decreasing conductance) in an artificial synapse.
Funder
National Natural Science Foundation of China
Major Fundamental Research Program of Shaanxi
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献