Stable, Low Power and Bit-Interleaving Aware SRAM Memory for Multi-Core Processing Elements

Author:

Yadav NandakishorORCID,Kim YoungbaeORCID,Li ShuaiORCID,Choi Kyuwon Ken

Abstract

The machine learning and convolutional neural network (CNN)-based intelligent artificial accelerator needs significant parallel data processing from the cache memory. The separate read port is mostly used to design built-in computational memory (CRAM) to reduce the data processing bottleneck. This memory uses multi-port reading and writing operations, which reduces stability and reliability. In this paper, we proposed a self-adaptive 12T SRAM cell to increase the read stability for multi-port operation. The self-adaptive technique increases stability and reliability. We increased the read stability by refreshing the storing node in the read mode of operation. The proposed technique also prevents the bit-interleaving problem. Further, we offered a butterfly-inspired SRAM bank to increase the performance and reduce the power dissipation. The proposed SRAM saves 12% more total power than the state-of-the-art 12T SRAM cell-based SRAM. We improve the write performance by 28.15% compared with the state-of-the-art 12T SRAM design. The total area overhead of the proposed architecture compared to the conventional 6T SRAM cell-based SRAM is only 1.9 times larger than the 6T SRAM cell.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Highly Stable 10T SRAM Cell for Low Power Applications;2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON);2023-02-08

2. A Read-Decoupled Error-Tolerant 10T SRAM Cell in 32nm CMOS Technology;Jordan Journal of Electrical Engineering;2023

3. Low Computing Leakage, Wide-Swing Output Compensation Circuit for Linearity Improvement in SRAM Multi-Row Read Computing-in-Memory;Electronics;2022-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3