Abstract
The paper addresses a problem of efficiently controlling an autonomous underwater vehicle (AUV), where its typical underactuated model is considered. Due to critical uncertainties and nonlinearities in the system caused by unavoidable external disturbances such as ocean currents when it operates, it is paramount to robustly maintain motions of the vehicle over time as expected. Therefore, it is proposed to employ the hierarchical sliding mode control technique to design the closed-loop control scheme for the device. However, exactly determining parameters of the AUV control system is impractical since its nonlinearities and external disturbances can vary those parameters over time. Thus, it is proposed to exploit neural networks to develop an adaptive learning mechanism that allows the system to learn its parameters adaptively. More importantly, stability of the AUV system controlled by the proposed approach is theoretically proved to be guaranteed by the use of the Lyapunov theory. Effectiveness of the proposed control scheme was verified by the experiments implemented in a synthetic environment, where the obtained results are highly promising.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献