Tube-Based Event-Triggered Path Tracking for AUV against Disturbances and Parametric Uncertainties

Author:

Chen Yuheng1,Bian Yougang12ORCID

Affiliation:

1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China

2. Wuxi Intelligent Control Research Institute (WICRI), Hunan University, Wuxi 214072, China

Abstract

In order to enhance the performance of disturbance rejection in AUV’s path tracking, this paper proposes a novel tube-based event-triggered path-tracking strategy. The proposed tracking strategy consists of a speed control law and an event-triggered tube model predictive control (tube MPC) scheme. Firstly, the speed control law using linear model predictive control (LMPC) technology is obtained to converge the nominal path-tracking deviation. Secondly, the event-triggered tube MPC scheme is used to calculate the optimal control input, which can enhance the performance of disturbance rejection. Considering the nonlinear hydrodynamic characteristics of AUV, a linear matrix inequality (LMI) is formulated to obtain tight constraints on the AUV and the feedback matrix. Moreover, to enhance real-time performance, tight constraints and the feedback matrix are all calculated offline. An event-triggering mechanism is used. When the surge speed change command does not exceed the upper bound, adaptive tight constraints are obtained. Finally, numerical simulation results show that the proposed tube-based event-triggered path-tracking strategy can enhance the performance of disturbance rejection and ensure good real-time performance.

Funder

Hunan Provincial Natural Science Foundation of China

Defense Industrial Technology Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3