Switching Characteristics and Mechanism Using Al2O3 Interfacial Layer in Al/Cu/GdOx/Al2O3/TiN Memristor

Author:

Chiu Chiao-Fan,Ginnaram Sreekanth,Senapati Asim,Chen Yi-PinORCID,Maikap SiddheswarORCID

Abstract

Resistive switching characteristics by using the Al2O3 interfacial layer in an Al/Cu/GdOx/Al2O3/TiN memristor have been enhanced as compared to the Al/Cu/GdOx/TiN structure owing to the insertion of Al2O3 layer for the first time. Polycrystalline grain, chemical composition, and surface roughness of defective GdOx film have been investigated by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). For bipolar resistive switching (BRS) characteristics, the conduction mechanism of high resistance state (HRS) is a space-charge limited current for the Al/Cu/GdOx/TiN device while the Al/Cu/GdOx/Al2O3/TiN device shows Schottky emission. However, both devices show Ohmic at a low resistance state (LRS). After the device has been SET, the Cu filament evidences by both TEM and elemental mapping. Oxygen-rich at the Cu/GdOx interface and Al2O3 layer are confirmed by energy dispersive X-ray spectroscopy (EDS) line profile. The Al/Cu/GdOx/Al2O3/TiN memristor has lower RESET current, higher speed operation of 100 ns, long read pulse endurance of >109 cycles, good data retention, and the memristor with a large resistance ratio of >105 is operated at a low current of 1.5 µA. The complementary resistive switching (CRS) characteristics of the Al/Cu/GdOx/Al2O3/TiN memristor show also a low current operation as compared to the Al/Cu/GdOx/TiN device (300 µA vs. 3.1 mA). The transport mechanism is the Cu ion migration and it shows Ohmic at low field and hopping at high field regions. A larger hopping distance of 1.82 nm at the Cu/GdOx interface is obtained as compared to a hopping distance of 1.14 nm in the Al2O3 layer owing to a larger Cu filament length at the Cu/GdOx interface than the Al2O3 layer. Similarly, the CRS mechanism is explained by using the schematic model. The CRS characteristics show a stable state with long endurance of >1000 cycles at a pulse width of 1 µs owing to the insertion of Al2O3 interfacial layer in the Al/Cu/GdOx/Al2O3/TiN structure.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3